Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 196
2.
Mov Disord ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38685873

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

3.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article En | MEDLINE | ID: mdl-38502237

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
4.
Ann Clin Transl Neurol ; 11(3): 819-825, 2024 Mar.
Article En | MEDLINE | ID: mdl-38327089

INTRODUCTION: COXPD23 is a rare mitochondrial disease caused by biallelic pathogenic variants in GTPBP3. We report on two siblings with a mild phenotype. CASE REPORTS: The young boy presented with global developmental delay, ataxic gait and upper limbs tremor, and the older sister with absence seizures and hypertrophic cardiomyopathy. Respiratory chain impairment was confirmed in muscle. DISCUSSION: Reviewed cases point toward clustering around two prevalent phenotypes: an early-onset presentation with severe fatal encephalopathy and a late milder presentation with global developmental delay/ID and cardiopathy, with the latter as, is the main feature. Our patients showed an intermediate phenotype with intrafamilial variability.


Mitochondrial Diseases , Seizures , Male , Humans , Mitochondria , Phenotype , GTP-Binding Proteins
6.
Front Neurol ; 14: 1284339, 2023.
Article En | MEDLINE | ID: mdl-38116105

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder leading to severe combined serotonin, dopamine, norepinephrine, and epinephrine deficiency. We report on a female patient with borderline functioning and sporadic clear-cut focal to bilateral seizures from age 10 years. A neuropsychological assessment highlighted a mild impairment in executive functions, affecting attention span and visual-spatial abilities. Following the diagnosis of epilepsy with a presumed genetic etiology, we applied a diagnostic approach inclusive of a next-generation sequencing (NGS) gene panel, which uncovered two variants in trans in the DOPA decarboxylase (DDC) gene underlying an AADC deficiency. This compound heterozygous genotype was associated with a mild reduction of homovanillic acid, a low level of the norepinephrine catabolite, and a significant reduction of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Remarkably, 3-O-methyldopa (3-OMD) and 5-hydroxytryptophan were instead increased. During the genetically guided re-evaluation process, some mild signs of dysautonomic dysfunction (nasal congestion, abnormal sweating, hypotension and fainting, excessive sleepiness, small hands and feet, and increased levels of prolactin, tiredness, and fatigue), more typical of AADC deficiency, were evaluated with new insight. Of the two AADC variants, the R347Q has already been characterized as a loss-of-function with severe catalytic impairments, while the novel L391P variant has been predicted to have a less severe impact. Bioinformatic analyses suggest that the amino acid substitution may affect affinity for the PLP coenzyme. Thus, the genotype corresponds to a phenotype with mild and late-onset symptoms, of which seizures were the clinical sign, leading to medical attention. This case report expands the spectrum of AADC deficiency phenotypes to encompass a less-disabling clinical condition including borderline cognitive functioning, drug-responsive epilepsy, and mild autonomic dysfunction.

8.
Mol Genet Metab ; 140(3): 107684, 2023 11.
Article En | MEDLINE | ID: mdl-37672857

The main neurological, cognitive, and behavioural consequences of phenylketonuria have been eradicated thanks to new-born screening and Phe-restricted diet therapy. However, the effects of high phenylalanine levels during adolescence and adulthood on neurocognitive functions remain a concern. This systematic review aimed at collecting clinical data suggesting the safest metabolic target for early treated PKU during the second decade of life. Twenty studies met the inclusion criteria for full-text review. Relevant studies included papers that (a) examined the relationship between metabolic control and neurocognitive functions during adolescence or (b) investigated the impact of metabolic control in adolescence on adult outcomes. Most studies showed a positive correlation between metabolic control during adolescence and neurocognitive outcomes across ages. This was true both for IQ and executive functions, although data on executive functions were less clear, and it remains to be established whether they are more vulnerable to Phe than IQ. Taken together present evidence confirm brain vulnerability to Phe during adolescence and suggests that low average Phe levels and low Phe fluctuations should be maintained throughout life. While results are fully compatible with current European recommendations, clinical and methodological limitations coupled with remarkable interindividual variability prevented a clear identification of a safe threshold for Phe blood levels during adolescence.


Cognition , Phenylketonurias , Adult , Humans , Adolescent , Neuropsychological Tests , Executive Function , Brain , Phenylketonurias/drug therapy , Phenylalanine
10.
Mol Genet Metab ; 140(3): 107666, 2023 11.
Article En | MEDLINE | ID: mdl-37549444

BACKGROUND AND OBJECTIVE: Neonatal screening and early treatment have changed the natural history of PKU, preventing severe neurological and intellectual disability. Nevertheless, the outcome of the disease in early-treated adult patients (ETPKU) is less than optimal, the predictive value of metabolic biomarkers is feeble, and the recommended levels of blood phenylalanine (Phe) for adulthood are controversial. A crucial question whose answer will improve our understanding and treatment of PKU is whether cognitive outcomes can be modulated by levels of Phe even in early-treated adults. To address this question, we carried out an interventional study in seven ETPKU women planning a pregnancy. METHODS: They underwent an extensive neurocognitive assessment at baseline, and 3 and 6 months after having attained the blood Phe concentration recommended to prevent PKU fetopathy, but before pregnancy. RESULTS: After 3 and 6 months with a stable blood Phe level of about 240 µmol/L, all participants experienced significant improvements in almost all neurocognitive domains and tasks. IQ also increased of 11 to 21 points from the last assessment before enrolment. This pattern remained strong and consistent after correction for multiple comparisons. CONCLUSION: Our results indicate that a) strong cognitive improvement is possible even in adulthood and may be demonstrated by lowering Phe near normal levels; b) testing cognition under different metabolic conditions may unveil an individual vulnerability to Phe. These results pave the way for personalised treatment of the disease in adults with ETPKU.


Phenylketonurias , Precision Medicine , Pregnancy , Infant, Newborn , Humans , Adult , Female , Phenylketonurias/therapy , Cognition , Neonatal Screening , Phenylalanine
11.
J Inherit Metab Dis ; 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37402126

The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.

12.
Int Rev Neurobiol ; 169: 259-315, 2023.
Article En | MEDLINE | ID: mdl-37482395

Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.


Dystonia , Dystonic Disorders , Hepatolenticular Degeneration , Metabolic Diseases , Humans , Dystonic Disorders/genetics , Metabolic Diseases/drug therapy , Metabolic Networks and Pathways
13.
J Inherit Metab Dis ; 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37452721

Elevated serum prolactin concentrations occur in inherited disorders of biogenic amine metabolism because dopamine deficiency leads to insufficient inhibition of prolactin secretion. This work from the International Working Group on Neurotransmitter Related Disorders (iNTD) presents the results of the first standardized study on levodopa-refractory hyperprolactinemia (LRHP; >1000 mU/L) and pituitary magnetic resonance imaging (MRI) abnormalities in patients with inherited disorders of biogenic amine metabolism. Twenty-six individuals had LRHP or abnormal pituitary findings on MRI. Tetrahydrobiopterin deficiencies were the most common diagnoses (n = 22). The median age at diagnosis of LRHP was 16 years (range: 2.5-30, 1st-3rd quartiles: 12.25-17 years). Twelve individuals (nine females) had symptoms attributed to hyperprolactinemia: menstruation-related abnormalities (n = 7), pubertal delay or arrest (n = 5), galactorrhea (n = 3), and decreased sexual functions (n = 2). MRI of the pituitary gland was obtained in 21 individuals; six had heterogeneity/hyperplasia of the gland, five had adenoma, and 10 had normal findings. Eleven individuals were treated with the dopamine agonist cabergoline, ameliorating the hyperprolactinemia-related symptoms in all those assessed. Routine monitoring of these symptoms together with prolactin concentrations, especially after the first decade of life, should be taken into consideration during follow-up evaluations. The potential of slow-release levodopa formulations and low-dose dopamine agonists as part of first-line therapy in the prevention and treatment of hyperprolactinemia should be investigated further in animal studies and human trials. This work adds hyperprolactinemia-related findings to the current knowledge of the phenotypic spectrum of inherited disorders of biogenic amine metabolism.

14.
Front Mol Neurosci ; 16: 1170061, 2023.
Article En | MEDLINE | ID: mdl-37324589

De novo CLTC mutations underlie a spectrum of early-onset neurodevelopmental phenotypes having developmental delay/intellectual disability (ID), epilepsy, and movement disorders (MD) as major clinical features. CLTC encodes the widely expressed heavy polypeptide of clathrin, a major component of the coated vesicles mediating endocytosis, intracellular trafficking, and synaptic vesicle recycling. The underlying pathogenic mechanism is largely unknown. Here, we assessed the functional impact of the recurrent c.2669C > T (p.P890L) substitution, which is associated with a relatively mild ID/MD phenotype. Primary fibroblasts endogenously expressing the mutated protein show reduced transferrin uptake compared to fibroblast lines obtained from three unrelated healthy donors, suggesting defective clathrin-mediated endocytosis. In vitro studies also reveal a block in cell cycle transition from G0/G1 to the S phase in patient's cells compared to control cells. To demonstrate the causative role of the p.P890L substitution, the pathogenic missense change was introduced at the orthologous position of the Caenorhabditis elegans gene, chc-1 (p.P892L), via CRISPR/Cas9. The resulting homozygous gene-edited strain displays resistance to aldicarb and hypersensitivity to PTZ, indicating defective release of acetylcholine and GABA by ventral cord motor neurons. Consistently, mutant animals show synaptic vesicle depletion at the sublateral nerve cords, and slightly defective dopamine signaling, highlighting a generalized deficit in synaptic transmission. This defective release of neurotransmitters is associated with their secondary accumulation at the presynaptic membrane. Automated analysis of C. elegans locomotion indicates that chc-1 mutants move slower than their isogenic controls and display defective synaptic plasticity. Phenotypic profiling of chc-1 (+/P892L) heterozygous animals and transgenic overexpression experiments document a mild dominant-negative behavior for the mutant allele. Finally, a more severe phenotype resembling that of chc-1 null mutants is observed in animals harboring the c.3146 T > C substitution (p.L1049P), homologs of the pathogenic c.3140 T > C (p.L1047P) change associated with a severe epileptic phenotype. Overall, our findings provide novel insights into disease mechanisms and genotype-phenotype correlations of CLTC-related disorders.

15.
Mol Genet Metab ; 139(2): 107588, 2023 06.
Article En | MEDLINE | ID: mdl-37149991

Lacking direct neuropathological data, neuroimaging exploration has become the most powerful tool to give insight into pathophysiological alterations of early-treated PKU (ETPKU) patients. We conducted a systematic review of neuroimaging studies in ETPKU patients to explore 1) the occurrence of consistent neuroimaging alterations; 2) the relationship between them and neurological and cognitive disorders; 3) the contribution of neuroimaging in the insight of neuropathological background of ETPKU subjects; 4) whether brain neuroimaging may provide additional information in the monitoring of the disease course. Thirty-eight studies met the inclusion criteria for the full-text review, including morphological T1/T2 sequences, diffusion brain imaging (DWI/DTI) studies, brain MRI volumetric, functional neuroimaging studies, neurotransmission and brain energetic imaging studies. Non-progressive brain white matter changes were the most frequent and precocious alterations. As confirmed in hundreds of young adults with ETPKU, they affect over 90% of ETPKU patients. Consistent correlations are emerging between microstructural alteration (as detected by DWI/DTI) and metabolic control, which have also been confirmed in a few interventional trials. Volumetric studies detected later and less consistent cortical and subcortical grey matter alterations, which seem to be influenced by the patient's age and metabolic control. The few functional neuroimaging studies so far showed preliminary but interesting data about cortical activation patterns, skill performance, and brain connectivity. Further research is mandatory in these more complex areas. Recurrent methodological limitations include restricted sample sizes concerning the clinical variability of the disease, large age-range, variable measures of metabolic control, and prevalence of cross-sectional rather than longitudinal interventional studies.


Phenylketonurias , White Matter , Young Adult , Humans , Cross-Sectional Studies , Brain/metabolism , Neuroimaging , White Matter/pathology
16.
Parkinsonism Relat Disord ; 111: 105405, 2023 06.
Article En | MEDLINE | ID: mdl-37142469

AIM: To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD: Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS: Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION: Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.


Movement Disorders , Humans , Male , Female , Child , Movement Disorders/drug therapy , Movement Disorders/pathology , Movement Disorders/physiopathology , Movement Disorders/surgery , Muscle Hypotonia , Developmental Disabilities , Case Reports as Topic
17.
Neurobiol Dis ; 180: 106093, 2023 05.
Article En | MEDLINE | ID: mdl-36948260

Untreated phenylketonuria (PKU) patients and PKU animal models show hypomyelination in the central nervous system and white matter damages, which are accompanied by myelin basic protein (MBP) impairment. Despite many assumptions, the primary explanation of the mentioned cerebral outcomes remains elusive. In this study, MBP protein and mRNA expression on brains of wild type (WT) and phenylketonuric (ENU2) mice were analyzed throughout mice lifespan (14-60-180-270-360-540 post-natal days, PND). The results confirmed the low MBP expression at first PND times, while revealed an unprecedented progressive MBP protein expression recovery in aged ENU2 mice. Unexpectedly, unaltered MBP mRNA expression between WT and ENU2 was always observed. Additionally, for the same time intervals, a significant decrease of the phenylalanine concentration in the peripheral blood and brain of ENU2 mice was detected, to date, for the first time. In this scenario, a translational hindrance of MBP during initial and late cerebral development in ENU2 mice was hypothesized, leading to the execution of a microRNA microarray analysis on 60 PND brains, which was followed by a proteomic assay on 60 and 360 PND brains in order to validate in silico miRNA-target predictions. Taken together, miR-218-1-3p, miR-1231-3p and miR-217-5p were considered as the most impactful microRNAs, since a downregulation of their potential targets (MAG, CNTNAP2 and ANLN, respectively) can indirectly lead to a low MBP protein expression. These miRNAs, in addition, follow an opposite expression trend compared to MBP during adulthood, and their target proteins revealed a complete normalization in aged ENU2 mice. In conclusion, these results provide a new perspective on the PKU pathophysiology understanding and on a possible treatment, emphasizing the potential modulating role of differentially expressed microRNAs in MBP expression on PKU brains during PKU mouse lifespan.


MicroRNAs , Phenylketonurias , Mice , Animals , MicroRNAs/genetics , Myelin Basic Protein , Longevity , Proteomics , Phenylketonurias/genetics , Phenylketonurias/complications , Phenylketonurias/metabolism , RNA, Messenger , Membrane Proteins , Nerve Tissue Proteins
18.
Genes (Basel) ; 14(2)2023 01 19.
Article En | MEDLINE | ID: mdl-36833190

Inherited disorders of biogenic amine metabolism are genetically determined conditions resulting in dysfunctions or lack of enzymes involved in the synthesis, degradation, or transport of dopamine, serotonin, adrenaline/noradrenaline, and their metabolites or defects of their cofactor or chaperone biosynthesis. They represent a group of treatable diseases presenting with complex patterns of movement disorders (dystonia, oculogyric crises, severe/hypokinetic syndrome, myoclonic jerks, and tremors) associated with a delay in the emergence of postural reactions, global development delay, and autonomic dysregulation. The earlier the disease manifests, the more severe and widespread the impaired motor functions. Diagnosis mainly depends on measuring neurotransmitter metabolites in cerebrospinal fluid that may address the genetic confirmation. Correlations between the severity of phenotypes and genotypes may vary remarkably among the different diseases. Traditional pharmacological strategies are not disease-modifying in most cases. Gene therapy has provided promising results in patients with DYT-DDC and in vitro models of DYT/PARK-SLC6A3. The rarity of these diseases, combined with limited knowledge of their clinical, biochemical, and molecular genetic features, frequently leads to misdiagnosis or significant diagnostic delays. This review provides updates on these aspects with a final outlook on future perspectives.


Movement Disorders , Humans , Dopamine/metabolism , Neurotransmitter Agents/metabolism , Genotype , Phenotype
19.
Genes (Basel) ; 14(2)2023 01 26.
Article En | MEDLINE | ID: mdl-36833246

De novo mutations affecting the G protein α o subunit (Gαo)-encoding gene (GNAO1) cause childhood-onset developmental delay, hyperkinetic movement disorders, and epilepsy. Recently, we established Caenorhabditis elegans as an informative experimental model for deciphering pathogenic mechanisms associated with GNAO1 defects and identifying new therapies. In this study, we generated two additional gene-edited strains that harbor pathogenic variants which affect residues Glu246 and Arg209-two mutational hotspots in Gαo. In line with previous findings, biallelic changes displayed a variable hypomorphic effect on Gαo-mediated signaling that led to the excessive release of neurotransmitters by different classes of neurons, which, in turn, caused hyperactive egg laying and locomotion. Of note, heterozygous variants showed a cell-specific dominant-negative behavior, which was strictly dependent on the affected residue. As with previously generated mutants (S47G and A221D), caffeine was effective in attenuating the hyperkinetic behavior of R209H and E246K animals, indicating that its efficacy is mutation-independent. Conversely, istradefylline, a selective adenosine A2A receptor antagonist, was effective in R209H animals but not in E246K worms, suggesting that caffeine acts through both adenosine receptor-dependent and receptor-independent mechanisms. Overall, our findings provide new insights into disease mechanisms and further support the potential efficacy of caffeine in controlling dyskinesia associated with pathogenic GNAO1 mutations.


Caenorhabditis elegans , Epilepsy , Animals , Caffeine , Mutation , Epilepsy/genetics , GTP-Binding Proteins/genetics
20.
Mov Disord Clin Pract ; 10(1): 124-129, 2023 Jan.
Article En | MEDLINE | ID: mdl-36704080

Background: Ataxia-telangiectasia (A-T) is a progressive multisystemic neurodegenerative disease. The phenotypic spectrum includes conditions (variant A-T) with mild, late-onset, and atypical clinical presentations characterized by the prevalence of dyskinetic rather than ataxic features. Cases: We describe the clinical presentations of 3 siblings with early-onset truncal ataxia without obvious neurological deterioration or biological markers of classic A-T phenotype. We performed functional and genetic evaluation of 3 siblings with very mild neurological phenotype. Genetic evaluation with a next-generation sequencing panel for genes causative of cerebellar ataxia detected 2 known ATM gene variants, missense c.9023G>A p.(Arg3008His), and leaky splicing c.1066-6T>G variants. Functional studies showed mildly reduced ATM expression and residual kinase activity in the probands compared with healthy controls. Conclusions: These results suggest the importance of investigating ATM variants even in the presence of clinical and biological atypical cases to ensure specific therapeutic regimens and oncological surveillance in these patients.

...